Thermoelasticity and generalized thermoelasticity viewed as wave hierarchies
نویسنده
چکیده
It is seen how to write the standard form of the four partial differential equations in four unknowns of anisotropic thermoelasticity as a single equation in one variable, in terms of isothermal and isentropic wave operators. This equation, of diffusive type, is of the eighth order in the space derivatives and seventh order in the time derivatives and so is parabolic in character. After having seen how to cast the 1D diffusion equation into Whitham’s wave hierarchy form, it is seen how to recast the full equation, for unidirectional motion, in wave hierarchy form. The higher order waves are isothermal and the lower order waves are isentropic or purely diffusive. The wave hierarchy form is then used to derive the main features of the solution of the initial-value problem, thereby bypassing the need for an asymptotic analysis of the integral form of the exact solution. The results are specialized to the isotropic case. The theory of generalized thermoelasticity associates a relaxation time with the heat flux vector and the resulting system of equations is hyperbolic in character. It is also seen how to write this system in wave hierarchy form which is again used to derive the main features of the solution of the initial-value problem. Simpler results are obtained in the isotropic case. 10
منابع مشابه
Magneto-viscoelastic plane waves in rotating media in the generalized thermoelasticity II
A study is made of the propagation of time-harmonic magneto-thermoviscoelastic plane waves in a homogeneous electrically conducting viscoelastic medium of Kelvin-Voigt type permeated by a primary uniform external magnetic field when the entire medium rotates with a uniform angular velocity. The generalized thermoelasticity theory of type II (Green and Naghdi model) is used to study the propagat...
متن کاملOn Plane Waves for Mode-I Crack Problem in Generalized Thermoelasticity
A general model of the equations of generalized thermoelasticity for an infinite space weakened by a finite linear opening Mode-I crack is solving. The material is homogeneous and has isotropic properties of elastic half space. The crack is subjected to prescribed temperature and stress distribution. The formulation is applied to generalized thermoelasticity theories, the Lord-Şhulman...
متن کاملInfluences of Thermal Relaxation Times on Generalized Thermoelastic Longitudinal Waves in Circular Cylinder
This paper is concerned with propagation of thermoelastic longitudinal vibrations of an infinite circular cylinder, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). Three displacement potential functions are introduced to uncouple the equations of motion. The frequency equation, by using the traction free boundar...
متن کاملIii . the Basic Equations of Two - Temperature Generalized
ABSTRAC: The present paper deals with the review on the development of the theory of two-temperature thermoelasticity. The basic equations of two-temperature thermoelasticityin context of Lord and Shulman [6] theory and Green and Naghdi[15] theories of generalized thermoelasticity are reviewed. Relevant literature on two-temperature thermoelasticity is also reviewed.
متن کاملTheory of Generalized Piezoporo Thermoelasticity
In this paper, the basic constitutive equations and equations of motion are derived to describe the behavior of thermoelastic porous piezoelectric medium by using Biot’s theory and the theory of generalized thermoelasticity with on relaxation time (Lord-Shulman). The electrical enthalpy density function is derived in the general coordinates. Also, clear definitions for the poroelastic modulus, ...
متن کامل